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Background
	 Cardiovascular Diseases are the Top Killers in US. This study focused on 
atrial fibrillation and COVID-19 related thrombophilia. Currently, CHADS2 scores 
are used to evaluate risk of stroke from Atrial Fibrillation, in order to determine 
treatment by anticoagulants. However, this does not allow for personalization, 
potentially leading to erroneous treatment. Proposed tests for COVID-19 
Thrombophilia are new and speculative, with uncertain efficacy.
	 Microthrombi (30 – 70 µm) are much greater in size than normal blood cells 
(4 – 12 µm) (as shown in Table 1). Discrimination of such differential size by 
continuous scanning of a blood vessel offers an attractive new risk assessment for 
these grave maladies of mankind.

Cell Type Size Range (µm)
White Blood Cell (WBC) 6-12
Red Blood Cell (WBC) 4-8

Microthrombi (µT) 30-70
Table 1: Size Comparison of Cells

Methods
	 Ultrasound Phantom and Yeast Samples
	 In this study, yeast and yeast clusters of different sizes were used as a 
surrogate for circulating cells to create a proof of principle for noninvasive detection 
via ultrasound of Microthrombi (µT) as an personalize risk assessment modality 
for Atrial Fibrillation and COVID thrombophilia. For this study, a closed circulation 
system with an Ultrasound Phantom (UP) with wall-less vessels was created using 
the following steps (adapted from [1]) A vessel tube was placed in a cartridge. 
5.5% agar solution heated to 90°C and cooled to 55°C, mimicking soft tissue, was 
poured into the cartridge, and refrigerated at 4°C for 12 hours to solidify. The vessel 
tube was carefully removed and intravenous (IV) tube connectors were fastened to 
the two ends of the wall-less cavity in the solidified agar. IV tubing, an 250ml 0.9% 
sodium chloride, normal saline (NS), IV bag, and a Braun Vista infusion pump were 
connected to this system, as seen in figure 1 below. 

Figure 1: Closed Circulatory Circuit (CCC) Set-up

	 To such IV bags, 25ml of respective sample solutions, as described below, were 
injected. This closed circulatory circuit (CCC) represented the systemic circulation 
of the body with the Infusion Pump, mimicking the heart, was set at infusion rate 
of 800ml/hr. Each sample added to the IV bag was passed through our CCC, 
changing the tubing and flushing the UP with 25ml of NS between each sample. 
Doppler ultrasound was performed over UP for 10-minute duration using a 2-MHZ 
probe of GE LOGIQ e machine. Screenshots of the screen were taken every 15 
seconds.
Sample Descriptions: Instant yeast (Baker’s Corner distributed by Aldi Inc. Batavia, 
IL) was used. 0.7g was added to 100ml H2O at 37°C. Four yeast samples were 
prepared (first three samples shown in Figure 2a). In the first sample (Figure 
2b), yeast was only mixed with water to represent normal blood cells (5 µm). 
The second yeast sample (Figure 2c) was incubated with sugar (9g per 100ml) 
and starch (9g per 100ml) for 1 minute to represent Small µT (20-30 µm). After 
1 minute, for every 24ml sample solution, 1ml 4.8 mmol sodium fluoride (NaF) 

solution was added to block enolase, hence arresting further yeast division 
by blocking glucose metabolism. The third sample (Figure 2d) was incubated 
with starch and sugar (same as sample 2) for 15 minutes (adding NaF in same 
proportions at the end) to represent Large µT (60-100 µm). A fourth yeast sample 
was made by mixing the other 3 samples in 8:1:1 proportion (mimicking circulating 
blood in cardiovascular disease). Fifth sample had NS only.

Figure 2: A - From left to right: Sample 1, Sample 2, and Sample 3. Sample 4 was 
made by mixing portions of these three. B - Sample 1 (40x Microscope View). C - 

Sample 2 (40x Microscope View). D - Sample 3 (40x Microscope View).

Figure 3: Blood Smear at 40x Microscope View. RBCs are more crowded but 
comparable in size to the surrogate samples. 

Convolutional Neural Network
	 A real-time ultrasonography would require extensive time expense and 
errors due to visual fatigue even by experienced radiologists. Hence, machine 
learning strategies were used for automation and potentially improved accuracy. A 
Convolutional Neural Networks with binary classification were built to distinguish 
between Samples 2, 3, & 5. The screenshots of the ultrasound data were 
processed in the manner shown in Figure 4. First, the 40 screenshots obtained for 
Sample 2, 3, and 5 each needed to be pre-processed to prepare data to be inputed 
into the Neural Network. The screenshots obtained from the Ultrasound Machine 
were stored as 1 frame videos (in WMV format). For the Neural Network, JPG 
inputs were preferred. To derive JPG pictures for each screenshoted ultrasound 
data, the following steps were taken:

	

Figure 4: Diagram of the steps taken to process the Screenshots of the Ultrasound 
Data 

	 For the Convolutional Neural Network (CNN) models, Python code, with Keras, 
was used on the Google Colaboratory platform. The processed data was uploaded 
to Google Drive. Google Drive was mounted in the model in order to access the 
data. The data was appended, shuffled, and converted into a numpy array. The 
numpy array was inputed into CNNs. 60 models each were tested for 3 different 
distinctions: Large µT (Sample 3) vs. Normal Saline (Sample 5) (A), Small µT 
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(Sample 2)  vs. Normal Saline (B), and Large µT vs. Small µT (C). The models 
exhaustively tested 1 or 2 Convolutional Blocks with activation ‘relu’; 2, 4, 8, 16, 
or 32 nodes (the number of filters in a convolutional block); and 1 to 6 epochs. 
The first model (1) for each distinction has 2 convolutional blocks, 32 nodes, and 
6 epochs with consecutive models decreasing first in epochs, then in nodes, and 
finally in layers. After each convolutional block, there is a dropout layer with dropout 
chance 0.3. In each model, there is a flatten and 2 dense layers. 

Figure 5: Diagram of Layers in Convolutional Block (adapted from [2])

	 The study author evaluated (with batch checking by mentor) a shortened 
set of the full data used to train the CNN. Results of this human evaluation were 
compared to the most accuracte CNN model.

Results
	 Doppler signals from the third sample of yeast, representing Large µT 
surrogates, varied significantly from that of the first, second, and fifth samples 
in terms of intensity. This also allowed distinction between Large µT from other 
particles in the fourth sample. Sample 2 could not be distinguished from sample 1. 

Figure 6: Sample 1 - Normal Blood Cells; Sample 2 - Small µT; 
Sample 3 - Large µT; Sample 4 - 8:1:1 mix of the previous 3 samples; 

Sample 5 - Normal Saline, only.

	 The Convolutional Neural Network, made to improve accuracy and automate 
the process, proved greater accuracy. The most accurate models for each 
distinction were A2, B31, and C7 respectively. Overall, A2 was the most accurate. 
The sensitivities and specificities for each of the models were also calculated. After 
training for 4 epochs, the model had a training accuracy of 0.9856 and a validation 
accuracy of 0.9863, as shown by the Training & Validation Accuracy curve in Figure 
8. Four other models were also trained, their accuracy and loss are depicted in 
Table 2.

Figure 7: Confusion Matrix for Model A2 (Large µT vs. Normal Saline)

Model A2 B31 C7

Training Accuracy 0.9921 0.6670 0.9571

Validation Accuracy 0.9731 0.6087 0.9636
Test Accuracy 0.9817 0.6801 0.9598

Sensitivity 0.9964 0.5553 0.9993

Specificity 0.9774 0.8199 0.9016

Table 2: Comparison of Accuracies, Sensitivity, and Specificity of the top model of 
each distinction

	 Human evaluation of the shortened data yielded a lower accuracy of 0.9374. Its 
Sensitivity, the chance that a predicted Large µT signal is true positive, was 0.9604; 
its Specificity, the chance that a predicted Normal Saline signal is true negative, 
was 0.9143. Both of these measures were also lower than similar measures for 
model A2. 

Discussion
	 In this study, the energy in the fluid is evenly spread throughout the volume. 
Modifying the basic equation for kinetic energy, E / V = 1/2 ρ v2 is derived, where 
E is energy, V is volume, ρ is density, and v is velocity. Therefore, a higher density 
particle, i.e. yeast clusters acting as surrogates for Large µT, will have lower velocity. 
Since the flow rate remains constant, the velocity of the normal saline surrounding 
the clusters has to rise, as the energy required to achieve the flow rate rises. This 
directly corresponds to higher intensities seen in Sample 3. Similar mechanisms 
are found in the human body. Hence, a similar phenomena can be expected in the 
human body.
	 Interestingly, while the other 2 classifications host incredible accuracy, distinction 
between Small µT surrogates and Normal Saline had poor accuracy, suggesting 
the ultrasound sensor used does not have a large enough frequency to effectively 
distinguish between Small Microthrombi and Normal Blood.
	 The CNN models were more accurate than the human evaluation. Proposed 
factors behind this were the limitations of eyes and low screen contrast preventing 
detection of finer details that could aid in detection and visual fatigue.
	 Thus, this provides a proof of principle demonstration, through the CCC system, 
suggesting that large µT can be detected through real-time Doppler ultrasound 
over carotid artery. Using such an approach for diagnosis, ultrasound detection of 
microthrombi could result in a faster and more effective risk assessment of Atrial 
Fibrillation and COVID-19 thrombophilia.
	 The universality, non-invasive nature, automation, and high accuracy of this 
proposed methodology makes it ideal for a preliminary screening test. If particles 
are detected, confirmatory tests to determine exact cause of disease can be 
conducted later. This test will reduce the number of tests for the general public 
as only patients test positive for Cardiovascular Diseases will require further 
screening. This would make the screening process easier and enable greater reach 
without any pain or radiation exposure.

Future Work
	 Further trials need to be conducted with the use of cell lines, rather than 
yeast surrogates, leading up to a clinical trial. Trials will need to be conducted to 
determine what levels of microthrombi equate to certain treatments. To determine 
these guidelines, a group of patients for different disease should be screened using 
the methodology and clotting events observed, without any treatment. Experts can 
then determine thresholds for treatment for different diseases.
	 In this study, small µT signals were not able to be detected accurately. 
However, with an ultrasound sensor with higher frequency (in GHZ range), these 
smaller particles might also become detectable. This would further improve the 
accuracy of the methodology proposed in this study. Additionally, new breakthrough 
ultrasound technology can be used to create a wearable ultrasound sensor, 
allowing for remote (potentially at-home) testing.
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